
Top 10 REST API Mistakes
and How to Avoid Them

© Copyright 2019 NearForm Ltd. All Rights Reserved.

Nigel Hanlon

Node.js Dublin

Who am I?
- Nigel Hanlon

- Working with NearForm as a Backend Developer for 2 ½
years so far.

- @nigelhanlon on Twitter
- github.com/nigelhanlon

This Talk

This talk will focus on ten of the most common and impactful mistakes made when
developing modern REST APIs. From dreadful documentation to version-breaking
mayhem, we will discuss what it truly takes to build an API you can be proud of and
the pitfalls to avoid.

“Experience is simply the
name we give our

mistakes.”

Oscar Wilde

What is REST?

REST is..
● A design pattern you apply to your project.

● Separate to the platform and language you
are using.

● Universal if followed correctly.

REST is not..
● An API but an API can be RESTful.

● A protocol, a web service or just following the
HTTP standard.

● Difficult to implement, but requires
forethought.

REST is an acronym for REpresentational State Transfer.

The Six Guiding Principles of REST

Client Server Stateless Cacheable Uniform
interface Layered system

Clear separation
between server

and client roles to
simplify

interactions.

Every request must
contain all of the

information
necessary to

understand the
request. Client

stores state.

If a response is
cacheable, then a

client cache is
given the right to

reuse that
response data for
later, equivalent

requests.

Each endpoint
should follow the

same design
principle and

behaviour
throughout the

API.

A client should not
know or care if it

is connected
directly to an end
server, or many

serving the same
endpoint.

Code on
demand

You are free to
return executable
code to support

additional
features of your

application.
(Optional, think

applets)

Resources
Inconsistent resource naming 01

What’s wrong with this?

/articles/listArticles/sortByNew

● You should never define actions when naming, that’s what HTTP verbs are for.

● You should always use lowercase naming with dashes if needed.

● Filters and sorting should always be done via query parameters.

What’s wrong with this?

/books/123/authors/8/categories/1

● REST endpoints should be organised by largest to smallest resource.

/categories/1/authors/8/books/123

What’s wrong with this?

/group/3/user/4

● You should always try and use the plural form

● We are selecting from a collection so we should model them as such.

/groups/3/users/4

Resources
REST says exactly nothing about what URIs should look like. It’s up to you to design
a great API experience.

You are representing a resource. HTTP
Verbs define actions

No actions in names

Each url segment should represent a smaller
and smaller resource

Biggest to smallest

Resources are collections, name them as
such

Resources are plural

Endpoints should describe your data model,
not your database. (More on this later)

Models, not database tables

Filtering and sorting should be done as a
query parameter and not part of resource
naming.

Filters should be queries

If you define a naming convention, use it
consistently.

Consistency is key

Versioning
Not implementing versioning from
the start 02

Version your API!

Software is never finished and neither is
your REST API.

Follow best practice and..

● Version prefix endpoints, eg /v1/...
● Tolerate minor revisions, bump on

major changes.
● Keep a changelog documenting

revisions.

Schemas
Ignoring the power of Schemas 03

An Example

{

 "title": "The Time Machine",

 "author": "H.G. Wells",

 "price": 9.99,

 "published":"1895-05-07T00:00:00.000Z",

 "available": true

}

const { title, author, price, published,
available } = req.body

if(!title || !author) { ...

}

if(!isNaN(price) || price < 0.99) { ...

}

if(!isNaN(new Date(published).getTime())){
...

}

With a Schema

{

 "title": "The Time Machine",

 "author": "H.G. Wells",

 "price": 9.99,

 "published":"1895-05-07T00:00:00.000Z",

 "available": true

}

{
 "required": ["title", "author", "price"],
 "type": "object",
 "properties": {
 "title":{
 "type": "string",
 "maxLength": 256
 },
 "price":{
 "type": "number",
 "minimum": 0.99
 },
 "published": {
 "type": "string",
 "format": "date-time"
 },
 "available: {
 "type": "boolean"
 "default": true
 }
 }
}

Benefits
Schemas are a great way to both enforce standards and document REST APIs.

Tools like Swagger can automatically
generate documentation from schemas

Documentation for free

You can design and revise your API before
final implementation.

Collaborate API Design

The same schemas can be used on both the
front and backend.

Schemas are portable

Modern API frameworks can automatically
return 400 errors for schema violations

Schemas can be enforced

Tools like Postman and various test runners
support OpenAPI Schemas out of the box

Automated Testing

Docs
Undeadable, outdated or missing
documentation 04

Documentation

We all love good documentation but hate
writing it.

● The code is the documentation..
● Just look at the example JSON
● Here’s a pdf with screenshots you

can’t search, copy or paste from.
● What documentation?

Wish List

● List of resources (Data model)

● Authentication guide

● Endpoint definitions

● Error definitions

● Example responses

● Code snippets

● Changelog

Some great examples

If you would like some inspiration, try these:

Stripe
https://stripe.com/docs/api

GitHub
https://developer.github.com/

Twitter
https://developer.twitter.com/en/docs

Model
Poor data models cost bandwidth 05

Poor API design
has terrible
consequences.

An Example

GET /books/123

{

 "title": "JavaScript: The Good Parts",

 "author": 456,

 "category": 789

}

GET /authors/456

{

 "name": "Douglas Crockford"

}

GET /categories/789

{

 "category": "Software Development"

}

An Example

GET /books/123

{
 "title": "JavaScript: The Good Parts",

 "author": {
"id": 456,
"name": "Douglas Crockford"

 },

 "category": {
"id": 789,
"category": "Software Development"

 }
}

GET /authors/456

{

 "name": "Douglas Crockford"

}

GET /categories/789

{

 "category": "Software Development"

}

Best Practice
When building an API you must consider the resources you are trying to represent.

Your API should aim to deliver relevant
information in as few requests as possible.

Minimise requests

Consolidate smaller resources if and when it
makes your model cleaner.

Consolidate

If a resource is relevant, hydrate and deliver
it rather than just an identifier.

Hydrate resources

HTTP
Not using the right HTTP Verbs and
Status 06

A Guide to HTTP Status Codes

1xx 2xx 3xx 4xx 5xx

Hold on! Here you go. Go away. You screwed
up.

I screwed up.

Try these..

Code Status When to use

202 Accepted Useful for accepting requests that may take time to process.

204 No Content Successful delete requests or changes that need no reply.

400 Bad Request Generic cover all response but confirms the client is at fault.

401 Unauthorised No authentication credentials presented.

403 Forbidden User correctly authenticated, but they don’t have the required permissions.

422 Unprocessable Entity The request payload is correct but cannot be processed for some reason.

429 Too Many Requests Return this when implementing rate limiting or quota based limits.

501 Not Implemented A handy way to to say this endpoint will exist in the future

503 Service Unavailable API is down for maintenance

A Guide to HTTP Verbs

GET POST PUT DELETE PATCH

I want this Create this Change this Delete this Change just
this part

Putting it all
together..

GET 200 OK

POST: 201 Created

PUT: 200 OK

PATCH: 200 OK

DELETE: 204 No Content

2

1

4

3

5

Errors
Poor Error Responses 07

Errors

Internal Server Error

Errors

HTTP 422 Unprocessable Entity

Errors
{

"statusCode": 422,

"message": "Failed to create new event",

"error": "Property eventDate cannot be in the past",

"help": "http://awesome-events-api.com/docs/addEvent"

}

Error Handling Best Practice
A good error response is worth its weight in gold, but don’t give too much away.

Stop returning 500 error codes for
everything… please?

Return specific status codes

400 errors are usually client side, but
verbose 500s could expose sensitive
internal data or attack vectors.

Verbose 400s, strict 500s

Don’t return plain text errors on a JSON API.
They are next to useless.

JSON Errors for a JSON API

Where appropriate, include messages,
error codes or details to help debug.

Include details

Consistent error messages are much easier
to handle by clients.

Consistency

Sometimes you need to return more than
one error, especially when using forms.

Use error arrays if needed

Not Stress
Testing 08

Reasons to stress
test

Basic Benchmarks.

Memory Leaks.

Resource Starvation.

Capacity Planning

Performance Regression

2

1

4

3

5

Tools

AutoCannon - A HTTP/1.1
benchmarking tool written in

node.

Ox - Discover the bottlenecks
and hot paths in your code,

with flamegraphs.

Clinic.js - Tools to help
diagnose and pinpoint
Node.js performance

issues.

Paging
Prev | Mistake 9 of 10 | Next 09

Pagination

Most endpoints that return a list of
entities should provide pagination.

● Improves frontend experience
● Allows for prefetching
● Less bandwidth intensive
● Lower DB loads (provided you index

correctly).
● Filtering and sorting can return

more relevant results faster.

Pagination
{

"meta": {
"page": { "size": 10, "offset": 20, "total": 100 }

},
"links": {

"prev": "/example-data?offset=0&limit=10",
"self": "/example-data?offset=20&limit=10",
"next": "/example-data?offset=30&limit=10"

},
"data": [

{ "type": "examples", "id": "10" },
{ "type": "examples", "id": "11" },
...
..
.
..
...
{ "type": "examples", "id": "20" }

]
}

Permission
Creating your own roles &
permissions system 10

Don’t do it.

Permissions
{

"username": "Nigel",
"admin": true

}

{
"username": "Bob",
"admin": false

}

Permissions
{

"username": "Nigel",
"admin": true,
"permissions": ["create", "delete", "view"]

}

{
"username": "Bob",
"admin": false,
"permissions": ["view"]

}

Permissions

{
 "username": "Nigel",
 "roles": ["admin"]
}

{
 "username": "Bob",
 "roles": ["user"]
}

{
 "username": "Alice",
 "roles": ["editor"]
}

{
 "admin": [
 "create",
 "delete::all",
 "update::all",
 "view",
 "comment"
],

 "editor": [
 "create",
 "update:own",
 "delete::own",
 "view",
 "comment"
],

 "user": [
 "view",
 "comment"
],

 "guest": ["view"]
}

Permissions
{

"editor": [
 "delete::comment::own::blogpost",
 "update::comment::own::blogpost",
 "delete::comment::own::gallery",
 "update::comment::own::gallery",
 "list::comment",
 "moderate::comment::own",
 "create::blogpost",
 "create::gallery",
 "delete::blogpost::own",
 "delete::gallery::own",
 "update::blogpost::own",
 "update::gallery::own",
 "update::tags::own",
 "delete::tags::own,
 "create::tags",
 "publish::blogpost::own",
 "unpublish::blogpost::own,
 "publish::gallery::own",
 "unpublish::gallery::own,
 "create::contributor"
 ...
]

}

Try these..
There are plenty of production ready
solutions you can use.

Choose one that fits your needs.

Aim for the best fit with minimal
overhead.

https://casbin.org/

https://github.com/onury/accesscontrol

https://nearform.github.io/udaru

https://casbin.org/
https://github.com/onury/accesscontrol
https://nearform.github.io/udaru

GraphQL
Not at least giving it a try! 11?

Questions?

+ 1 916 235 6459
+ 353 1 514 3545

nearform.com
sales@nearform.com

nearform.com

Thank you for
your time.
United States:
International:

